Hardening the TCP/IP stack to SYN attacks

How to detect a SYN attack

It is very simple to detect SYN attacks. The netstat command shows us how many connections are currently in the half-open state. The half-open state is described as SYN_RECEIVED in Windows and as SYN_RECV in Unix systems.

# netstat -n -p TCP tcp        0      0 10.100.0.200:21            237.177.154.8:25882     SYN_RECV    - tcp        0      0 10.100.0.200:21            236.15.133.204:2577     SYN_RECV    - tcp        0      0 10.100.0.200:21            127.160.6.129:51748     SYN_RECV    - tcp        0      0 10.100.0.200:21            230.220.13.25:47393     SYN_RECV    - tcp        0      0 10.100.0.200:21            227.200.204.182:60427   SYN_RECV    - tcp        0      0 10.100.0.200:21            232.115.18.38:278       SYN_RECV    - tcp        0      0 10.100.0.200:21            229.116.95.96:5122      SYN_RECV    - tcp        0      0 10.100.0.200:21            236.219.139.207:49162   SYN_RECV    - tcp        0      0 10.100.0.200:21            238.100.72.228:37899    SYN_RECV    - ... 
We can also count how many half-open connections are in the backlog queue at the moment. In the example below, 769 connections (for TELNET) in the SYN RECEIVED state are kept in the backlog queue.

# netstat -n -p TCP | grep SYN_RECV | grep :23 | wc -l 769 
The other method for detecting SYN attacks is to print TCP statistics and look at the TCP parameters which count dropped connection requests. While under attack, the values of these parameters grow rapidly.
In this example we watch the value of the TcpHalfOpenDrop parameter on a Sun Solaris machine.

# netstat -s -P tcp | grep tcpHalfOpenDrop         tcpHalfOpenDrop     =   473 
It is important to note that every TCP port has its own backlog queue, but only one variable of the TCP/IP stack controls the size of backlog queues for all ports.

The backlog queue

The backlog queue is a large memory structure used to handle incoming packets with the SYN flag set until the moment the three-way handshake process is completed. An operating system allocates part of the system memory for every incoming connection. We know that every TCP port can handle a defined number of incoming requests. The backlog queue controls how many half-open connections can be handled by the operating system at the same time. When a maximum number of incoming connections is reached, subsequent requests are silently dropped by the operating system.
As mentioned before, when we detect a lot of connections in the SYN RECEIVED state, host is probably under a SYN flooding attack. Moreover, the source IP addresses of these incoming packets can be spoofed. To limit the effects of SYN attacks we should enable some built-in protection mechanisms. Additionally, we can sometimes use techniques such as increasing the backlog queue size and minimizing the total time where a pending connection in kept in allocated memory (in the backlog queue).

Built-in protection mechanisms

Operating system: Windows 2000
The most important parameter in Windows 2000 and also in Windows Server 2003 is SynAttackProtect. Enabling this parameter allows the operating system to handle incoming connections more efficiently. The protection can be set by adding a SynAttackProtect DWORD value to the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 
In general, when a SYN attack is detected the SynAttackProtect parameter changes the behavior of the TCP/IP stack. This allows the operating system to handle more SYN requests. It works by disabling some socket options, adding additional delays to connection indications and changing the timeout for connection requests.
When the value of SynAttackProtect is set to 1, the number of retransmissions is reduced and according to the vendor, the creation of a route cache entry is delayed until a connection is made. The recommended value of SynAttackProtect is 2, which additionally delays the indication of a connection to the Windows Socket until the three-way handshake is completed. During an attack, better performance in handling connections is achieved by disabling the use of a few parameters (these parameters are usually used by the system during the process of creating new connections). The TCPInitialRTT parameter, which defines the time of the first retransmission, will no longer work. It's impossible to negotiate the window size value. Also, the scalable windows option is disabled on any socket.
As we can see, by enabling the SynAttackProtect parameter we don't change the TCP/IP stack behavior until under a SYN attack. But even then, when SynAttackProtect starts to operate, the operating system can handle legitimate incoming connections.
The operating system enables protection against SYN attacks automatically when it detects that values of the following three parameters are exceeded. These parameters are TcpMaxHalfOpenTcpMaxHalfOpenRetried and TcpMaxPortsExhausted.
To change the values of these parameters, first we have to add them to the same registry key as we made for SynAttackProtect.
The TcpMaxHalfOpen registry entry defines the maximum number of SYN RECEIVED states which can be handled concurrently before SYN protection starts working. The recommended value of this parameter is 100 for Windows 2000 Server and 500 for Windows 2000 Advanced Server.
TcpMaxHalfOpenRetried defines the maximum number of half-open connections, for which the operating system has performed at least one retransmission, before SYN protection begins to operate. The recommended value is 80 for Windows 2000 Server, and 400 for Advanced Server.
The TcpMaxPortsExhausted registry entry defines the number of dropped SYN requests, after which the protection against SYN attacks starts to operate. Recommended value is 5.
Operating system: Linux RedHat
RedHat, like other Linux operating systems, has implemented a SYN cookies mechanism which can be enabled in the following way:

# echo 1 > /proc/sys/net/ipv4/tcp_syncookies 
Note that to make this change permanent we need to create a startup file that sets this variable. We must do the same operation for other UNIX variables described in this paper because the values for these variables will return to default upon system reboot.
SYN cookies protection is especially useful when the system is under a SYN flood attack and source IP addresses of SYN packets are also forged (a SYN spoofing attack). This mechanism allows construction of a packet with the SYN and ACK flags set and which has a specially crafted initial sequence number (ISN), called a cookie. The value of the cookie is not a pseudo-random number generated by the system but instead is the result of a hash function. This hash result is generated from information like: source IP, source port, destination IP, destination port plus some secret values. During a SYN attack the system generates a response by sending back a packet with a cookie, instead of rejecting the connection when the SYN queue is full. When a server receives a packet with the ACK flag set (the last stage of the three-way handshake process) then it verifies the cookie. When its value is correct, it creates the connection, even though there is no corresponding entry in the SYN queue. Then we know that it is a legitimate connection and that the source IP address was not spoofed. It is important to note that the SYN cookie mechanism works by not using the backlog queue at all, so we don't need to change the backlog queue size. More information about SYN cookies can be found athttp://cr.yp.to/syncookies.html.
Also note that the SYN cookies mechanism works only when the CONFIG_SYNCOOKIES option is set during kernel compilation.
The next section will describe other useful methods of protection against SYN attacks. I would like to emphasize that under heavy SYN attacks (like Distributed SYN flooding attack) these methods may help but still not solve the problem.

Increasing the backlog queue

Under a SYN attack, we can modify the backlog queue to support more connections in the half-open state without denying access to legitimate clients. In some operating systems, the value of the backlog queue is very low and vendors often recommend increasing the SYN queue when a system is under attack.
Increasing the backlog queue size requires that a system reserve additional memory resources for incoming requests. If a system has not enough memory for this operation, it will have an impact on system performance. We should also make sure that network applications like Apache or IIS can accept more connections.
Operating system: Windows 2000
Aside from described above TcpMaxHalfOpen and TcpMaxHalfOpenRetried variables, in Windows 2000 the number of connections handled in the half-open state can be set through a dynamic backlog. Configuration of this dynamic backlog is accomplished via the AFD.SYS driver. This kernel-mode driver is used to support Windows Socket applications like FTP and Telnet. To increase the number of half-open connections, AFD.SYS provides four registry entries. All of these values, corresponding to AFD.SYS, are located under the following registry key:

HKLM\System\CurrentControlSet\Services\AFD\Parameters
The EnableDynamicBacklog registry value is a global switch to enable or disable a dynamic backlog. Setting it to 1 enables the dynamic backlog queue.
MinimumDynamicBacklog controls the minimum number of free connections allowed on a single TCP port. If the number of free connections drops below this value, then additional free connections are created automatically. Recommended value is 20.
The MaximumDynamicBacklog registry value defines the sum of active half-open connections and the maximum number of free connections. When this value is exceeded, no more free connections will be created by a system. Microsoft suggests that this value should not exceed 20000.
The last DynamicBacklogGrowthDelta parameter controls the number of free connections to be created when additional connections are necessary. Recommended value: 10.
The table below shows the recommended values for the AFD.SYS driver:

Subkey Registry Value EntryFormatValue
EnableDynamicBacklogDWORD1
MinimumDynamicBacklogDWORD20
MaximumDynamicBacklogDWORD20000
DynamicBacklogGrowthDeltaDWORD10
Operating system: Linux
tcp_max_syn_backlog variable defines how many half-open connections can be kept by the backlog queue. For instance 256 is a total number of half-open connections handled in memory by Linux RedHat 7.3. The TCP/IP stack variables can be configured by sysctl or standard Unix commands. The following example shows how to change the default size of the backlog queue by the sysctl command:

# sysctl -w net.ipv4.tcp_max_syn_backlog="2048" 
Operating system: Sun Solaris
In Sun Solaris there are two parameters which control the maximum number of connections. The first parameter controls the total number of full connections. The second tcp_conn_req_max_q0 parameter defines how many half-open connections are allowed without the dropping of incoming requests. In Sun Solaris 8, the default value is set to 1024. Using the ndd command we can modify this value.

# ndd -set /dev/tcp tcp_conn_req_max_q0 2048 
Operating system: HP-UX
In HP-UX, a tcp_syn_rcvd_max TCP/IP stack variable is responsible for control of the maximum number of half-open connections in the SYN RECEIVE state. In HP-UX 11.00 this value is set to 500. We can change this value by using the ndd command, similar to the one used in a Sun Solaris system.

# ndd -set /dev/tcp tcp_syn_rcvd_max 2048 

Decreasing total time of handling connection request

As we know, SYN flooding/spoofing attacks are simply a series of SYN packets, mostly from forged IP addresses. In the last section we tried to increase the backlog queue. Now that our systems can handle more SYN requests, we should decrease the total time we keep half-open connections in the backlog queue. When a server receives a request, it immediately sends a response with the SYN and ACK flags set, puts this half-open connection into the backlog queue, and then waits for a packet with the ACK flag set from the client. When no response is received from the client, the server retransmits a response packet (with the SYN and ACK flags set) several times (depending on default value in each operating system) by giving the client a chance to send the ACK packet again. It is clear that when the source IP address of client was spoofed, the ACK packet will never arrive. After a few minutes the server removes this half-open connection. We can speed up this time of removing connections in the SYN RECEIVED state from the backlog queue by changing time of first retransmission and by changing the total number of retransmissions.
Another technique of protection against SYN attacks is switching off some TCP parameters that are always negotiated during the three-way handshake process. Some of these parameters are automatically turned off by mechanisms described in the first section (SynAttackProtect and Syncookies).
Now, I will describe TCP/IP stack variables which allow a decrease in the time half-open connections are kept in the backlog queue.
Operating system: Windows 2000
In Windows 2000, the default time for a first retransmission is set to 3 seconds (3000 milliseconds) and can be changed by modifying the value of the TcpInitialRtt registry entry (for every interface). For example, to decrease time of a first retransmission to 2 seconds we have to set this registry value to 2000 milliseconds in decimal format. The number of retransmissions (packets with the SYN and ACK flags set) is controlled by a TcpMaxConnectResponseRetransmissions registry parameter which has to be added to HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters registry key.
The table below contains a few examples of values and corresponding times for keeping half-open connections in the backlog queue (the time of a first retransmission is set to 3 seconds).

ValueTime of retransmissionTotal time to keep half-open connections in the backlog queue
1in 3rd second9 seconds
2in 3rd and 9th second21 seconds
3in 3rd , 9th and 21st second45 seconds
We can set this registry value to 0, whereby Windows doesn't try to retransmit packets at all. In this case, the system sends only one response and cancels the half-open connection after 3 seconds. This setting is ignored when its value is equal or greater than 2 and when SynAttackProtect is enabled.
Operating system: Linux RedHat
tcp_synack_retries variable is responsible for controlling the number of retransmissions in Linux operating system. Its default value is set to 5 for most Linux operating systems, which causes the half-open connection to be removed after 3 minutes. In the below table there are calculations for other values.

ValueTime of retransmissionTotal time to keep half-open connections in the backlog queue
1in 3rd second9 seconds
2in 3rd and 9th second21 seconds
3in 3rd , 9th and 21st second45 seconds
Operating system: Sun Solaris
In this operating system it is impossible to turn off retransmissions of packets directly using the ndd command. Moreover, in Sun Solaris there are parameters which are non-configurable by ndd and which control the number of retransmissions (at least 3) and total time of packet retransmissions (at least 3 minutes). More information about these parameters can be found in the "Solaris 2.x - Tuning Your TCP/IP stack and More" document.
Operating system: HP-UX
For HP-UX, the time spent handling half-open connections in the backlog queue is controlled by the tcp_ip_abort_cinterval parameter. By using the ndd command we can define how long a HP-UX operating system will be waiting for the ACK packet. We can control how many retransmissions will be performed indirectly by changing this value. Have a look at the table below.

ValueTime of retransmissionTotal time to keep half-open connections in the backlog queue
1000-1 second
5000in 2nd second5 seconds
10000in 2nd and 5th second10 seconds
60000In 2nd, 5th, 11th, 23rd and 47th second1 minute
We can change the time of a first retransmission by modifying tcp_rexmit_interval_initial. Intervals of subsequent retransmissions are controlled by two parameters: tcp_rexmit_interval and tcp_rexmit_interval_min. These three variables are the same as in a Sun Solaris operating system.

Summary

The methods of hardening the TCP/IP stack that are presented in this article make servers more resistant to SYN flooding and SYN spoofing - Denial of Service attacks. A modification of your default TCP/IP stack settings is also recommended during the process of securing of the operating system.



No comments: